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Abstract. We present Dirac-Brueckner-Hartree-Fock calculations for isospin asymmetric nuclear matter
which are based on improved approximations schemes. The potential matrix elements have been adapted
for isospin asymmetric nuclear matter in order to account for the proton-neutron mass splitting in a more
consistent way. The proton properties are particularly sensitive to this adaption and its consequences,
whereas the neutron properties remains almost unaffected in neutron-rich matter. Although at present full
Brueckner calculations are still too complex to apply to finite nuclei, these relativistic Brueckner results
can be used as a guidance to construct a density-dependent relativistic mean-field theory, which can be
applied to finite nuclei. It is found that an accurate reproduction of the Dirac-Brueckner-Hartree-Fock
equation of state requires a renormalization of these coupling functions.

PACS. 21.65.+f Nuclear matter – 21.60.-n Nuclear structure models and methods – 21.30.-x Nuclear
forces – 21.30.Fe Forces in hadronic systems and effective interactions

1 Introduction

The investigation of asymmetric matter is of importance
for astrophysical and nuclear-structure studies. In the
field of astrophysics this investigation is important for the
physics of supernova explosions [1] and of neutron stars [2],
e.g. the chemical composition and cooling mechanism of
protoneutron stars [3,4], mass-radius correlations [5,6],
and some other topics. In the field of nuclear structure the
investigation of isospin asymmetric matter is of interest in
study of neutron-rich nuclei [7]. This isovector dependence
of the nuclear force can be investigated in heavy-ion ex-
periments [8]. However, the data for neutron-rich nuclei
were rather scarce in the past. This situation is chang-
ing with the forthcoming new generation of radioactive
beam facilities, e.g. the future GSI facility FAIR in Ger-
many, the Rare Isotope Accelerator planned in the United
States of America or SPIRAL2 at GANIL/France, which
will produce large amounts of new data.

Models which make predictions on the nuclear equa-
tion of state (EoS) can roughly be divided into three
classes: Phenomenological density functionals, effective
field theory (EFT) approaches, and ab initio approaches.
Phenomenological density functionals are based on ef-
fective density-dependent interactions such as Gogny or
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Skyrme forces [9] or relativistic mean-field (RMF) mod-
els [10] with usually more than six and less than 15 pa-
rameters. The effective field theory approaches lead to
a more systematic expansion of the EoS in powers of
density, respectively the Fermi momentum kF. The ad-
vantage of EFT is the small number of free parame-
ters and a correspondingly higher predictive power. Ab
initio approaches are based on high-precision free-space
nucleon-nucleon interactions and the nuclear many-body
problem is treated microscopically. Predictions for the
nuclear EoS are essentially parameter free. Examples
are variational calculations [11], Brueckner-Hartree-Fock
(BHF) [6,12] or relativistic Dirac-Brueckner-Hartree-Fock
(DBHF) [13–20] calculations and Green’s functions Monte
Carlo approaches [21].

Many-body calculations, on the other hand, have to
rely on the summation of relevant diagram classes and
are still too involved for systematic applications to finite
nuclei. However, these results can be used as a guidance
for the construction of a “semi”-phenomenological density
functional. Examples are, e.g., Gogny forces [22] derived
from G-matrices or density-dependent relativistic mean-
field (DDRMF) theory [23,24], which can be based on
DBHF results.

The theoretical predictions for the isospin depen-
dence of nuclear interactions are still diverse. RMF the-



30 The European Physical Journal A

ory cannot describe the complex nonlinear behavior of the
DBHF and BHF binding energy at densities near ρ = 0.
Furthermore, the symmetry energy in relativistic DBHF
calculations is found to be significantly stiffer than in non-
relativistic BHF approaches [25], in particular at high den-
sities. The BHF calculations [26] predict a proton-neutron
mass splitting of m∗NR,n > m∗NR,p in neutron-dominated
nuclear matter. In contrast, RMF theory with the scalar
isovector δ-meson included predict the opposite behavior,
m∗D,n < m∗D,p [8,27]. The various Skyrme forces give oppo-
site predictions for the neutron-proton mass splitting. Rel-
ativistic ab initio calculations based on realistic nucleon-
nucleon interactions, as for instance the DBHF approach,
are the proper tool to answer these questions.

In this work we describe asymmetric nuclear matter in
the framework of the relativistic DBHF approach based
on projection techniques using the Bonn potential and
their bare NN matrix elements V [28]. Furthermore, the
optimal representation scheme for the T -matrix, the sub-
tracted T matrix representation, is applied. This scheme
has previously been applied to asymmetric nuclear mat-
ter in refs. [18–20]. However, in the present work we go
beyond the approach used in [18–20] in the sense that we
improve at a couple of approximations. To be more precise,
the Bonn potential has now been adapted for asymmetric
nuclear matter.

In the solution of the Bethe-Salpeter (BS) equation
we abandon the approximation of an averaged np mass
in the np channel and distinguish explicitly between the
different isospin-dependent matrix elements. As a con-
sequences, the potential and T -matrix are evaluated in
terms of six independent helicity or covariant amplitudes
instead of five [15], which are sufficient in the case of an
averaged np mass.

The plan of this paper is as follows. The relativis-
tic DBHF approach with emphasis on the treatment of
the nn, pp, and np channels is treated in sect. 2. Re-
sults are presented in sect. 3. Furthermore, the relation
between DBHF results and the RMF theory is discussed
in sect. 4.2. Finally, we end with a summary and a con-
clusion in sect. 5.

2 DBHF approach in isospin asymmetric

nuclear matter

In this section the relativistic Brueckner approach is dis-
cussed. First a general overview is given, followed by a
more detailed discussion of the modifications, which are
necessary to account properly for the proton-neutron mass
splitting and the isospin dependence of the corresponding
matrix elements.

In the relativistic DBHF approach a nucleon inside
nuclear matter is regarded as a dressed particle as a con-
sequence of its interaction with the surrounding nucleons.
This interaction of the nucleons is treated in the ladder
approximation of the relativistic BS equation

T = V + i

∫
V QGGT, (1)

where T denotes the T -matrix, V the bare nucleon-
nucleon, Q the Pauli operator, and G the Green’s function
of an intermediate off-shell nucleon. This Green’s function
G which describes the propagation of dressed nucleons in
the medium fulfills the Dyson equation

G = G0 +G0ΣG, (2)

where G0 denotes the free nucleon propagator and Σ the
self-energy. In the Hartree-Fock approximation this self-
energy is given by

Σ = −i
∫

F

(Tr[GT ]−GT ). (3)

Equations (1)-(3) are strongly coupled. Therefore, this set
of equations represents a self-consistency problem and has
to be iterated until convergence is reached.

The structure of the self-energy follows from the re-
quirement of translational and rotational invariance, her-
miticity, parity conservation, and time reversal invariance.
The most general form of the Lorentz structure of the self-
energy in the nuclear-matter rest frame is given by

Σ(k, kF) = Σs(k, kF)−γ0Σo(k, kF)+γ ·kΣv(k, kF), (4)

where the Σs, Σo, and Σv components are Lorentz scalar
functions which depend on the Lorentz invariants k2, k ·
j and j2, with jµ the baryon current. Therefore, these
Lorentz invariants can be expressed in terms of k0, |k| and
kF, where kF denotes the Fermi momentum. The different
components of the self-energy are determined by taking
the respective traces [29,30]

Σs =
1

4
tr[Σ], Σo =

−1
4

tr[γ0Σ],

Σv =
−1
4|k|2 tr[γ · kΣ]. (5)

The presence of the medium influences the masses and
momenta of the nucleons inside nuclear matter. These ef-
fective masses and effective momenta of the nucleons can
be written as

m∗(k, kF) = M + <eΣs(k, kF),

k∗µ = kµ + <eΣµ(k, kF). (6)

By the introduction of reduced quantities, one has the
reduced effective mass

m̃∗(k, kF) = m∗(k, kF)/(1 +Σv(k, kF)). (7)

and the reduced kinetic momentum

k̃∗µ = k∗µ/(1 +Σv(k, kF)), (8)

Hence, The Dirac equation written in terms of these re-
duced effective masses and momenta has the form

[γµk̃
∗µ − m̃∗(k, kF)]u(k, kF) = 0. (9)

To simplify the self-consistency scheme we will work in
the quasi-particle approximation, i.e. the imaginary part
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of the self-energy =mΣ will be neglected. In addition, the
“reference spectrum approximation” [31] is applied in the
iteration procedure, i.e. the effective mass of the nucleon
is assumed to be entirely density dependent (|k| = kF).
However, in general the reduced effective mass is den-
sity and momentum dependent. Therefore, this method
implies that the self-energy itself is only weakly momen-
tum dependent. At the end of the calculation one has
of course to verify the consistency of the assumption
Σ(k) ≈ Σ(|k| = kF) with the result of the iteration pro-
cedure.

The solution of the Dirac equation in eq. (9) provides
the positive-energy in-medium nucleon spinor

uλ(k, kF) =

√
Ẽ∗(k) + m̃∗F

2m̃∗F

(
1

2λ|k|

Ẽ∗(k)+m̃∗

F

)
χλ , (10)

where Ẽ∗(k) =
√

k2 + m̃∗2F denotes the reduced effective
energy and χλ a two-component Pauli spinor with λ =
± 1

2
1. The normalization of the Dirac spinor is thereby

chosen as ūλ(k, kF)uλ(k, kF) = 1.

2.1 nn and pp channel

It is convenient to reduce a four-dimensional BS integral
equation, eq. (1), to a three-dimensional one to solve the
scattering problem of two nucleons in the nuclear medium.
Therefore, the two-particle propagator iGG in the BS
equation has to be replaced by the effective Thompson
propagator. The Thompson propagator implies that the
time-like component of the momentum transfer in V and
T is set equal to zero. Hence, the Thompson propagator
restricts the exchanged energy transfer by δ(k0) to zero.
In addition, the Thompson propagator projects the inter-
mediate nucleons onto positive-energy states. Thus, in the
two-particle center-of-mass (c.m.) frame, which is the nat-
ural frame for studying two-particle scattering processes,
the Thompson equation can be written as [13,30]

T (p,q, x)|c.m. = V (p,q)

+

∫
d3k

(2π)3
V (p,k)

m∗2F

E∗2(k)

Q(k, x)

2E∗(q)−2E∗(k)+iε
T (k,q, x),

(11)

where q = (q1 − q2)/2 is the relative three-momentum
of the initial state and k and p are the relative three-
momenta of the intermediate and the final states, respec-
tively.

The Thompson equation (11) can be solved applying
standard techniques, which are outlined in detail by Erke-
lenz [32]. To determine the self-energy only positive-energy
states are needed. Therefore, it is more convenient to ap-
ply the Dirac nucleon propagator [29],

GD(k, kF) = [γµk
∗µ +m∗(k, kF)]2πiδ(k

∗2 −m∗2(k, kF))

×Θ(k∗0)Θ(kF − |k|), (12)

1 From now on we omit the tilde in this section because in
the following we normally deal with m̃∗

F, k̃
∗
µ

.

instead of the full nucleon propagator. Due to the Θ-
functions in eq. (12) only positive-energy nucleons are al-
lowed in the intermediate scattering states. In this way,
one avoids the delicate problem of infinities in the theory
which generally will occur if one includes contributions
from negative-energy nucleons in the Dirac sea [15,29].

In the on-shell case for identical particles only five of
the sixteen helicity matrix elements are independent which
follows from general symmetries [32]. After a partial-wave
projection onto the |JMLS〉-states the Thomas equation
reduces to a set of one-dimensional integral equations over
the relative momentum |k|. Furthermore, it decouples into
three subsystems of integral equations: the uncoupled spin
singlet, the uncoupled spin triplet, and the coupled triplet
states (appendix B). To achieve this reduction to the one-
dimensional integral equations the Pauli operator Q is re-
placed by an angle-averaged Pauli operator Q [29]. Due
to deformation of the Fermi sphere to a Fermi ellipsoid
in the two-nucleon c.m. frame, Q is evaluated for such a
Fermi ellipsoid:

Q =





0 for |k| < kmin ,
γE∗(k)−E∗

F

γu|k| for kmin < |k| < kmax ,

1 for kmax < |k|,
(13)

with kmin =
√
k2
F − u2E2

F, kmax = γ(uEF + kF), and u =
|u|. The partially decoupled set of the one-dimensional in-
tegral equations are solved by the matrix inversions tech-
niques of Haftel and Tabakin [33].

Due to the anti-symmetry of these two-nucleon states
the total isospin of the two-nucleon system (I = 0, 1) can
be restored by the standard selection rule

(−1)L+S+I = −1. (14)

The five independent partial-wave amplitudes in the helic-
ity representation are obtained from the five independent
on-shell amplitudes in the |JMLS〉 representation [32].
After the summation over the total angular momentum
one has the five on-shell plane-wave helicity matrix ele-
ments
〈
pλ′1λ

′
2|T I(x)|qλ1λ2

〉
=

∑

J

(
2J + 1

4π

)
dJλ′λ(θ)

〈
λ′1λ

′
2|T J,I(p,q, x)|λ1λ2

〉
, (15)

where θ is the scattering angle between q and p with |p| =
|q|. Furthermore, one has λ = λ1 − λ2 and λ′ = λ′1 − λ′2.
The reduced rotation matrices dJλ′λ(θ) are those defined
by Rose [34].

Since we determine the T -matrix elements in the two-
particle c.m. frame, a representation with covariant opera-
tors and Lorentz invariant amplitudes in Dirac space is the
most convenient way to Lorentz-transform the T -matrix
from the two-particle c.m. frame into the nuclear matter
rest frame [29]. Some freedom in the choice of this repre-
sentation exists, because pseudoscalar (ps) and pseudovec-
tor (pv) components cannot uniquely be disentangled for
on-shell scattering. This ambiguity is minimized by sepa-
rating the leading order, i.e. the single-meson exchange,
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from the full T -matrix. Therefore, the contributions stem-
ming from the single-π and -η exchange are given in the
complete pv representation. For the remaining part of the
T -matrix, the ps representation is chosen.

Taking the single-nucleon momentum k = (0, 0, k)
along the z-axis, then we have for the nn and pp chan-
nel contributions for the self-energy components in the ps
representation scheme:

Σij
s (k) =

1

4

∫ kFj

0

d3q

(2π)3
m∗j
E∗q,j

[
4F ij

S − F ij

S̃
− 4F ij

Ṽ

−12F ij

T̃
+ 4F ij

Ã
− F ij

P̃

]
, (16)

Σij
o (k) =

1

4

∫ kFj

0

d3q

(2π)3

[
−4F ij

V +F ij

S̃
−2F ij

Ṽ
−2F ij

Ã
−F ij

P̃

]
,

(17)

and

Σij
v (k) =

1

4

∫ kFj

0

d3q

(2π)3
q · k
|k|2E∗q,j

[
− 4F ij

V + F ij

S̃

−2F ij

Ṽ
− 2F ij

Ã
− F ij

P̃

]
, (18)

where i = j = n or i = j = p, respectively. In the complete
pv representation the nn and pp channel contributions to
the self-energy components are given by

Σij
s (k) =

1

4

∫ kFj

0

d3q

(2π)3
m∗j
E∗q,j

[
4gijS − gij

S̃
+ 4gijA

+
m∗2j +m∗2i − 2k∗µq∗µ

(m∗i +m∗j )
2

gij
P̃V

]
, (19)

Σij
o (k) = +

1

4

∫ kFj

0

d3q

(2π)3

[
gij
S̃
− 2gijA

−
2E∗k,i(m

∗2
j −k∗µq∗µ)− E∗q,j(m

∗2
j −m∗2i )

E∗q,j(m
∗
i+m

∗
j )

2
gij
P̃V

]
,

(20)

and

Σij
v (k)=

1

4

∫ kFj

0

d3q

(2π)3
q · k
|k|2E∗q,j

[
gij
S̃
−2gijA

−
2k∗z(m

∗2
j −k∗µq∗µ)−qz(m∗2j −m∗2i )

qz(m∗i +m
∗
j )

2
gij
P̃V

]
, (21)

where i = j = n or i = j = p, respectively.
In short, the complete pv representation is applied for

Vπ,η and the ps representation is used for the TSub = T −
Vπ,η to get the most favorable representation scheme, the
subtracted T -matrix representation scheme.

2.2 np channel

Since in isospin asymmetric nuclear matter one has to deal
with two distinct nucleons states in the np channel, this

channel is more complicated than the nn and pp channel.
Working with two distinct nucleons has consequences for
the Thompson equation, the Pauli blocking operator, and
the number of independent helicity matrix elements.

First, the Bonn potential [28] has to be made suitable
to treat distinct particles in the medium. An important
difference is that the neutrons and protons have unequal
effective masses. These distinct effective masses have to be
accounted for, in particular, in the evaluation of the po-
tential matrix elements. The resulting one-boson exchange
(OBE) matrix elements can be found in appendix A.

Second, the two-particle propagator iGiGj in the BS
equation has to be replaced by the Thompson propagator
for the np channel. The effective Thompson propagator
for this channel is given by

gnp = iGnGp =
m∗n
E∗n

m∗p
E∗p

1√
s∗ − E∗n − E∗p + iε

, (22)

where
√
s∗ is the invariant mass.

In contrast to the five independent helicity matrix ele-
ments in the on-shell case for identical particles, in the np
channel six helicity matrix elements are independent [35].
After the partial-wave projection onto the |JMLS〉-states,
using an average direct-exchange contribution in the po-
tential this time the Thompson equation partially decou-
ples into two subsystems of one-dimensional integral equa-
tions: the coupled spin singlet-triplet states and the cou-
pled triplet states (appendix B). To achieve the reduction
to the one-dimensional integral equations the Pauli op-
erator Q has to be replaced by an angle-averaged Pauli
operator Q [29]. However, the Pauli operator Q for the np
channel has to be modified compared to the one in the
nn and pp channel, since it has to be evaluated for Fermi
ellipsoids with different sizes. The result for the angle-
averaged Pauli operator for the np channel Qnp with a
neutron excess is

Qnp =




Θ(γuEFn−γkFn) for |k|<kmin ,

1/2[cos(θp)−cos(θn)]Θ(θn−θp) for kmin< |k|<kmax,

1 for kmax< |k|,
(23)

with kmin = γ|uEFn − kFn|, kmax = γ(uEFn + kFn),

θp=

{
arccos

(
γE∗

p(k)−E∗

Fp

γ|k||u|

)
for

∣∣∣γE
∗

p(k)−E∗

Fp

γ|k||u|

∣∣∣ ≤ 1,

0 otherwise,
(24)

and

θn =

{
arccos

(
E∗

Fn−γE
∗

n(k)
γ|k||u|

)
for

∣∣∣E
∗

Fn−γE
∗

n(k)
γ|k||u|

∣∣∣ ≤ 1,

π otherwise.

(25)
Due to the additional independent helicity matrix el-

ement, we will have a sixth independent covariant in the
T -matrix representation [35]. However, the problem is that
we need to have a decomposition that reduces to the one



E.N.E. van Dalen et al.: Dirac-Brueckner-Hartree-Fock calculations for isospin asymmetric nuclear matter . . . 33

used in the symmetric case. The general Lorentz repre-
sentation of the nine invariants given in [35] fulfill this
requirement. Leaving out the three redundant invariants
in our case, the additionally constructed covariant is de-
fined as

T I,dir
6 (|p|, θ, x) = 1

2
F I

6 (|p|, θ, x)((γµ)2 ·Qµ
1 − (γµ)1 ·Qµ

2 )

=
1

2
F I

6 (|p|, θ, x)(γ2 · k + γ1 · k), (26)

with Qµ
i = (pi + q′i)

µ/2m for i = 1, 2 and k = p1 + q′1 =
−(p2 +q′2) in the c.m. frame. The same sixth covariant is
used in ref. [15], while the exchange sixth amplitude given
in ref. [15] does not contribute in the self-energy compo-
nents. Therefore, one gets an additional term in the np
channel contribution to the neutron self-energy compo-
nents

Σnp
s,6(k)=

1

4

∫ kFp

0

d3q

(2π)3
m∗p
E∗q,p

[
4
k∗µq∗µ−m∗2p

m∗p
Fnp

6

]
, (27)

Σnp
o,6(k)=

1

4

∫ kFp

0

d3q

(2π)3

[
4m∗p

E∗k,n − E∗q,p
E∗q,p

Fnp
6

]
, (28)

and

Σnp
v,6(k)=

1

4

∫ kFp

0

d3q

(2π)3
q · k
|k|2E∗q,p

[
−4m∗p

k − qz
qz

Fnp
6

]
(29)

compared to the nn and pp channel. For the proton a simi-
lar additional term arises, where neutrons and protons are
interchanged in eqs. (27)-(29). In symmetric nuclear mat-
ter with equal effective masses for neutrons and protons,
the coefficient of this sixth independent amplitude van-
ishes, i.e. the familiar representation scheme with the five
linearly independent covariants is obtained, as expected.

Finally, the total neutron and proton self-energies in-
cluding all channels can be written as

Σn = Σnn +Σnp ; Σp = Σpp +Σpn , (30)

respectively.

3 Results and discussion

In fig. 1 we present the results for the equation of state
for various values of the asymmetry parameter β = (nn−
np)/nB in the framework of the DBHF approach with a
sixth independent amplitude in the np channel using the
Bonn-A potential. The applied representation is the opti-
mal representation so far, the subtracted T -matrix repre-
sentation. The two extreme cases are symmetric nuclear
matter (β = 0.0) and neutron matter (β = 1.0). The sym-
metric nuclear-matter results and neutron matter results
agree with those of refs. [16,18]. The binding energy curves
for intermediate values of β lie between these two extreme
curves and are slightly higher than in ref. [18]. In addition
to that, the binding energy

E(nB , β) = E(nB) + Esym(nB)β
2 +O(β4) (31)
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Fig. 1. Binding energy as a function of the baryon density.
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Fig. 2. Comparison of several EoSs from ab initio calculations,
i.e. the present approach (solid line), a nonrelativistic BHF [12]
(dash-dotted line) and a variational calculation [11] (dotted
line).

shows a nearly quadratic dependence on the asymmetry
parameter β as expected.

Figure 2 compares our prediction for the binding en-
ergy to the ones of other microscopic many-body ap-
proaches, the variational calculations from [11] and the
nonrelativistic BHF calculation from [12], at symmet-
ric nuclear matter (below zero) and pure neutron mat-
ter (above zero). The variational calculation is based
on the high-precision phenomenological Argonne V18 [36]
two-nucleon interaction and includes UIX three-body
forces [37] as well as relativistic boost correction denoted
by δv [11]. Also the nonrelativistic BHF calculation [12] is
based on the phenomenological Argonne V18 [36]. Further-
more, it includes a microscopic three-body force deduced
from the meson exchange current approach [12].

The first observation that becomes evident from fig. 2
is that in nuclear matter both, the BHF and DBHF, cal-
culations lead to more binding than the variational calcu-
lation. However, in all three cases the EoS of nuclear mat-
ter can be characterized as “soft”, at least at moderate
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Fig. 3. The neutron and proton optical potential in neutron-
rich matter as a function of the momentum k = |k|.

densities up to about three times saturation density. The
prediction of a soft EoS is the general outcome of a mi-
croscopic many-body calculation. Recent quantum Monte
Carlo calculations for symmetric nuclear matter [38] show
the same tendency. It should be noticed that this observa-
tion is supported by corresponding observables extracted
from heavy-ion reactions, where supranormal densities up
to about three times saturation density are probed. Heavy-
ion data for tranverse flow [39] or from kaon produc-
tion [40] support the picture of a soft EoS in symmetric
nuclear matter.

In neutron matter the variational calculations are less
stiff, in particular at high-density neutron matter, than
our DBHF calculations, whereas the nonrelativistic BHF
calculation lies in between these two approaches. However,
up to 1.5 times saturation density for neutron matter and
symmetric nuclear matter the three approaches show a
quite reasonable agreement. This fact indicates that these
are the density ranges which are at present reasonable well
controlled by state-of-the-art many-body calculations.

The high-density behavior of the EoS, in particular
that of the neutron matter EoS, can be constructed by
astrophysical observables [4]. The recent observation of
the at present heaviest compact star, a binary pulsar of
2.1 ± 0.2M¯ (1σ level) [41] rules out very soft neutron
matter EoSs. However, all three EoSs shown in fig. 2 ful-
fill this constraint since they yield maximum neutron star
masses between 2.2 and 2.3M¯.

In fig. 3 the neutron and proton optical potentials are
plotted as a function of the momentum k = |k| for various
values of the asymmetry parameter β = (nn − np)/nB at
a fixed nuclear density of nB = 0.166 fm−3. The depth
of the neutron optical potential decreases with increas-
ing asymmetry, whereas the depth of the proton optical
potential shows the opposite behavior. Furthermore, the
steepness of the neutron optical potential decreases with
increasing asymmetry parameter β, whereas the opposite
behavior is found in the proton case. Compared to ref. [20]
the neutron optical potential remains almost unaltered. In
contrast, the proton optical potential lies a bit lower and
is somewhat steeper as compared to ref. [20].
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Fig. 4. Neutron and proton effective mass as a function of the
momentum k = |k| in neutron matter at fixed nuclear density
nB = 0.166 fm−3. In addition, the effective mass in symmetric
nuclear matter is given.

The isovector optical potential Uiso =
Un−Up

2β strongly

depends on density and momentum. This optical potential
in neutron-rich matter initially stays constant and then
decreases strongly with increasing momentum. Further-
more, the isovector optical potential is almost independent
of the asymmetry parameter β. This behavior can also be
observed in refs. [18–20]. Since the proton optical potential
lies a bit lower, the isovector optical potential at k = 0 is
slightly higher than in refs. [18–20]. However, the optical
isovector potential at nuclear density nB = 0.166 fm−3 at
k = 0 is still in good agreement with the empirical value
of 22–34MeV [42].

An interesting issue is the proton-neutron mass split-
ting in neutron-rich matter, which has been discussed in
detail in refs. [19,20]. One should keep in mind that differ-
ent definitions of the effective mass exist, which are often
compared and sometimes even mixed up: the nonrelativis-
tic mass and the relativistic Dirac mass. In fig. 4 the non-
relativistic and Dirac effective mass of the neutron and
proton are compared for β = 1, i.e. neutron matter. Our
DBHF calculations based on projection techniques predict
a mass splitting of m∗D,n < m∗D,p in neutron-rich matter.
However, the nonrelativistic mass derived from our DBHF
approach shows the opposite behavior. This opposite be-
havior to the relativistic Dirac mass, i.e. m∗NR,n > m∗NR,p,
is in agreement with the results from nonrelativistic BHF
calculations [26]. This difference between the Dirac mass
splitting and the nonrelativistic mass splitting is not sur-
prising, since these masses are based on completely differ-
ent physical concepts. The relativistic Dirac mass is de-
fined through the scalar part of the nucleon self-energy in
the Dirac field equation which is absorbed into the effec-
tive mass (6). On the other hand, the nonrelativistic mass
parameterizes the momentum dependence of the single-
particle potential.

In this context we want to note that, in contrast to the
nonrelativisitc mass m∗NR, the momentum dependence of
the Dirac massm∗D is smooth and still moderate. This fact
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is important to justify the reference spectrum approxima-
tion, i.e. the usage of a momentum-independent effective
Dirac mass m̃∗F for the evaluation of the in-medium spinor
basis (10), the Thompson propagator and the potential
matrix elements (see appendix A).

In fig. 5 the neutron and proton effective Dirac masses
are plotted as a function of the baryon density nB for
pure neutron matter. Of course, a strong density depen-
dence can be observed. In addition, one has a Dirac mass
splitting ofm∗D,n < m∗D,p in the whole density range. RMF
field theories with the isovector ρ and δ mesons included
predict the same Dirac mass splitting. When only the ρ-
meson is included, the RMF theory predicts equal masses.
Hence, the δ meson is responsible for the mass splitting in
RMF theory.

Furthermore, in fig. 5 our results for the neutron and
proton effective Dirac mass in pure neutron matter are
compared to those from refs. [18–20], where only 5 covari-
ants were used in the np channel. The neutron effective
mass remains practically unaffected, whereas the proton
mass experiences a sizable reduction. These results are
easy to understand. The neutron self-energy consists of a
nn and a np part. Hence, the nn part becomes dominant
for a vanishing proton fraction. The proton self-energy
consists of a pp and a np part. In the limit of a vanish-
ing proton fraction, the np interaction becomes dominant.
Therefore, the proton properties, e.g. the proton effective
mass, are especially sensitive for the treatment of the np
channel in neutron-rich matter.

4 Relation to relativistic mean-field theory

4.1 DBHF self-energy components

At present full Brueckner calculations are still too complex
to allow an application to finite nuclei. However, within
the framework of the density-dependent mean-field theory

effective density-dependent coupling functions can be ob-
tained from the Brueckner self-energy components. Such
coupling functions parameterize the correlations of the T -
matrix in a handable way and can be applied to finite
nuclei within the framework of DDRMF theory [23]. In
contrast to standard RMF models, the meson-baryon ver-
tices are density dependent. As a consequence, rearrange-
ment contributions in the baryon field equations occur.
These rearrangement contributions should be taken into
account and are essential to satisfy energy momentum con-
servation and thermodynamic consistency in this density-
dependent mean-field theory.

In order to properly parameterize the isospin depen-
dence of the self-energy components, the coupling func-
tions must be based on four different channels: scalar
isoscalar, vector isoscalar, scalar isovector, and vector
isovector channel. In RMF theory these channels corre-
spond to phenomenological exchange bosons, i.e. the σ,
ω, δ, and ρ mesons. The effective coupling constants are
then given by

(
gσ(nB , β)

mσ

)2

= −1

2

Σs,p(kFp) +Σs,n(kFn)

ns
, (32)

(
gω(nB , β)

mω

)2

= −1

2

Σo,p(kFp) +Σo,n(kFn)

nB
, (33)

(
gδ(nB , β)

mδ

)2

= −1

2

Σs,p(kFp)−Σs,n(kFn)

ns3
, (34)

(
gρ(nB , β)

mρ

)2

= −1

2

Σo,p(kFp)−Σo,n(kFn)

n3
, (35)

with ns = nsp + nsn, nB = np + nn, ns3 = nsp − nsn, and
n3 = np − nn, where

nsi =
2

(2π)3

∫ kFi

0

dk
m∗i√

m∗i
2 + k2

(36)

and

ni =
2

(2π)3

∫ kFi

0

dk =
k3
Fi

3π2
(37)

are, respectively, the scalar and vector density of the par-
ticle i(= n, p). The results for the isoscalar and isovector
coupling constants are plotted in figs. 6 and 7, respectively.
The strength of the isoscalar coupling functions decreases
as the density increases. At low densities, both the scalar
gσ and the vector isoscalar coupling gω show a strong de-
crease with increasing density. However, at higher densi-
ties the vector coupling stays more or less constant. The
strength in the isovector channel is small compared to
that in the isoscalar channel. Furthermore, compared to
ref. [18] the dependence on the proton fraction for isovec-
tor strength is strongly reduced.

We can directly use these density-dependent coupling
functions in a RMF theory for infinite nuclear matter. For
practical purposes and to keep the DDRMF functional
as simple as possible we ignore in the following the weak
isospin dependence and assume only a density dependence
in the coupling functions of eqs. (32)-(35). In fig. 8 the
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Fig. 6. The isoscalar scalar (gσ) and vector (gω) effective cou-
pling functions are plotted as a function of the baryon density
for different values of the asymmetry parameter β.
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pling functions are plottted as a function of the baryon density
for different values of the asymmetry parameter β.

binding energy determined from this RMF theory is com-
pared to our DBHF results for neutron matter and sym-
metric nuclear matter. The binding energy in RMF theory
is given by

E/A =
2

(2π)3

∑

i=n,p

∫

ΘFi

d3kE∗i (k)

+
1

2

[(
gσ(nB)

mσ

)2

n2
s +

(
gω(nB)

mω

)2

n2
B

+

(
gδ(nB)

mδ

)2

n2
s3 +

(
gρ(nB)

mρ

)2

n2
3

]
, (38)

where the density-dependent couplings

(
gα(nB)

mα

)2

, α ∈ {σ, ω, δ, ρ} (39)

are obtained from eqs. (32)-(35) using the data for β =
0.2. No rearrangement terms are present in eq. (38), since
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Fig. 8. The DBHF EoS is compared to DDRMF EoS and the
renormalized DDRMF EoS.

rearrangement contributions do not contribute at the level
of the binding energy [23]. In RMF theory the integral
for the kinetic energy can be evaluated and leads to the
analytical expression

2

(2π)3

∑

i=n,p

∫

ΘFi

d3kE∗i (k) =
∑

i=n,p

[
3

4
EFini +

1

4
m∗ins,i

]

(40)

with the Fermi energy EFi =
√
k2
Fi +m∗2i . The effective

mass contains the contributions of the two scalar mesons.
Through the different couplings to the isovector δ-meson
this isovector meson accounts for the proton-neutron mass
splitting, i.e.

m∗n/p =M −
(
gσ(nB)

mσ

)2

ns ±
(
gδ(nB)

mδ

)2

ns3 . (41)

Comparing the original DBHF EoS in fig. 8 for the
DDRMF EoS based on the parameterization (32)-(35),
one observes clear deviations of the two approaches, both
for symmetric as well as for neutron matter. This suggests
that the density-dependent coupling functions should be
extracted more carefully as has been done in the “naive”
definition (32)-(35). In other words, an accurate reproduc-
tion of the DBHF EoS requires a renormalization of the
coupling functions which includes the contributions from
Fock terms in a more consistent way.

4.2 Renormalized self-energy components

The fact that renormalization is required when DBHF re-
sults are mapped on RMF theory can easily be seen from
the DBHF binding energy,

E/A =
2

(2π)3

∑

i=n,p

∫

ΘFi

d3k

[
E∗i (k)−Σo,i

−1

2
Σs,i

m∗i
E∗i

+
1

2

Σµ,ik
∗µ

E∗i

]
. (42)
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The two essential differences between DBHF and RMF
concerning the structure of the self-energy, respectively
the mean field, are firstly, that the DBHF self-energies
carry an explicit momentum dependence and, secondly,
the appearance of a nonvanishing spatial contribution Σv,
see eqs. (4)-(9). Both features should be taken into ac-
count as accurate as possible when DBHF results are pa-
rameterized in terms of RMF theory. The Σv component
originates from Fock exchange contributions which are not
present in RMF theory. For an accurate reproduction of
the DBHF energy functional the spatial Σv component
has to be included in a proper way. Firstly, the Σv com-
ponent can be absorbed into the effective mass according
to eq. (7) and this reduced effective mass has to be iden-
tified with RMF effective mass, i.e.

m̃∗i =
M +Σs,i(kFi)

1 +Σv,i(kFi)
=M +ΣDDRMF

s,i . (43)

This leads to the renormalized scalar self-energy compo-
nent

ΣDDRMF
s,i =

Σs,i(kFi)−MΣv,i(kFi)

1 +Σv,i(kFi)
. (44)

However, the DBHF energy functional of eq. (42) has ad-
ditional terms compared to the DDRMF energy functional
of eq. (38). In the same way, however, then using the en-
ergy density instead of the effective mass, the following
expression for the normalized vector self-energy compo-
nent is obtained:

ΣDDRMF
o,i = Σo,i(kFi)−

Σv,i(kFi)[3EFini + m̃∗ins,i]

4ni
. (45)

These renormalized self-energy components are now in-
serted into eqs. (32)-(35) to obtain the renormalized
density-dependent coupling functions. By this procedure
all terms which contribute to the DBHF energy functional
are taken into account in the correspondingly constructed
DDRMF functional. However, the explicit momentum de-
pendence in eq. (42) cannot so easily be transferred to the
RMF theory which leads still to slight deviation of the
corresponding energy functionals. A possibility would be
to perform a Taylor expansion of the self-energy compo-
nents in terms of the momentum [24]. Since the intrinsic
momentum dependence of the DBHF self-energy compo-
nents is generally weak [16,18] we neglect such additional
correction terms. The new renormalized isoscalar density-
dependent coupling functions are reduced by an amount
of 15–20MeV compared to the corresponding nonrenor-
malized coupling functions in fig. 6, but the qualitative
behavior is very similar. The small isospin dependence of
the isoscalar strength is almost insensitive to the renor-
malization. The renormalized isovector ρ- and δ-meson
coupling functions are shown in fig. 9. The density de-
pendence of the renormalized isovector coupling functions
is similar to those of fig. 7. However, the β-dependence is
now more pronounced.

These renormalized density coupling functions are ap-
plied in RMF theory. Again the weak isospin dependence
of these coupling functions is ignored. Therefore, we use
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Fig. 9. The renormalized isovector scalar (gδ) and vector (gρ)
effective coupling functions are plotted as a function of the
baryon density for different values of the asymmetry parame-
ter β.

Table 1. Saturation properties of the DBHF model and the
correspondingly constructed relativistic mean-field functionals.

Model nsat [fm−3] kF [fm−1] E/A [MeV]

DDRMF 0.143 1.28 −14.22

Renormalized DDRMF 0.168 1.36 −15.18

DBHF 0.181 1.39 −16.15

again the data for β = 0.2 which corresponds approx-
imately to the asymmetry in an Au nucleus. From ta-
ble 1, one can see that the saturation density is shifted
to lower densities and the binding energy of the satura-
tion point is weaker in the renormalized DDRMF theory
compared to the original DBHF results. Without renor-
malization the deviations for the saturation density and
the binding are even stronger. In fig. 8 the binding energy
of the renormalized DDRMF theory is shown for neu-
tron matter and symmetric nuclear matter. The results
are in a fairly good agreement with the DBHF results and
much better than the results without renormalization. Al-
though the renormalized isovector coupling functions g2

ρ

and g2
δ show a stronger β-dependence the assumption of

only density-dependent couplings is still a good approx-
imation. Extracting those coupling functions at the rep-
resentative value of β = 0.2 both the symmetric and the
neutron matter EoS are reproduced with fairly good ac-
curacy. However, as can be seen from table 1, the map-
ping of DBHF onto the RMF functional leads generally
to a shift of the saturation point towards lower densities
and a slightly smaller binding energy. This feature, which
is mainly due to the neglection of the intrinsic momen-
tum dependence of the DBHF self-energy, has also been
observed in previous works when a similar procedure was
applied [23,24]. Although the most realistic, Bonn A leads
in DBHF to a slightly too large saturation density [14,16]
and therefore such a shift of the saturation point is in favor
of the DDRMF functional when applied to finite nuclei.
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5 Conclusion

In summary, we present calculations of isospin asymmet-
ric nuclear matter in a relativistic DBHF framework based
on projection techniques. The approximation scheme for
the treatment of isospin asymmetric nuclear matter has
been improved. First of all, the application of the Bonn
potential —factually the Bonn-A potential has been used
throughout this work— has been modified in order to dis-
tinguish between different proton and neutron masses by
the evaluation of the potential matrix elements. The mod-
ification is essential in the np channel when in-medium
matrix elements are evaluated.

Secondly, the T -matrix can be represented by a set
of six linearly independent Lorentz invariants in the np
channel. This sixth covariant has been chosen as proposed
in [15]. However, in contrast to [15] we apply still the im-
proved decomposition scheme of the T -matrix (subtracted
T -matrix representation) [16,18–20] which minimizes on-
shell ambiguities in the determination of the self-energy
components.

It is found that the proton properties are, in par-
ticular, sensitive to the consequences of the adaption of
the Bonn potential for isospin asymmetric nuclear mat-
ter and the introduction of a sixth covariant. The pro-
ton optical potential lies a bit lower and is steeper as
compared to ref. [20], whereas the neutron optical po-
tential is almost unaltered. Furthermore, the neutron ef-
fective mass remains practically unaffected, whereas the
proton mass experiences a sizable reduction. The reason
is that in neutron-rich matter proton properties depend
much stronger on contributions from the np channel than
neutron properties.

The main properties of isospin asymmetric nuclear
matter remain, however, unchanged. The binding energy
shows the expected quadratic dependence on the asym-
metry parameter. Also the depth and the steepness of
the neutron optical potential decreases with increasing
asymmetry, whereas the depth and steepness of the pro-
ton optical potential still shows the opposite behavior. A
strong density and momentum dependence can again be
observed for the isovector optical potential. In addition,
the isovector optical potential remains almost independent
of the asymmetry parameter β. Our DBHF calculations
based on projection techniques predict a mass splitting
of m∗D,n < m∗D,p in neutron-rich matter as expected. The
nonrelativistic mass derived from our DBHF approach still
shows the opposite behavior, which is in agreement with
the results from nonrelativistic BHF calculations [26].

At present full Brueckner calculations are still too in-
volved for systematic applications in finite nuclei. How-
ever, the density-dependent mean-field effective coupling
functions, which are obtained from the Brueckner self-
energy components, parameterize the correlations of the
T -matrix in a handable way. Therefore, these coupling
functions can be applied to finite nuclei within the frame-
work of DDRMF theory [23]. Doing so, a “naive” param-
eterization of the DBHF results in terms of a density-
dependent relativistic mean-field functional leads to a
poor reproduction of the original EoS. The reason are

contributions from Fock-terms which are not present at
the mean field level and which have to be incorporated
in an effective way. This leads to a renormalization pro-
cedure of the coupling functions which absorbs the con-
tributions from the Fock terms. However, the results with
renormalization are in a quite good agreement with the
DBHF results. In other words, an accurate reproduction
of the DBHF EoS requires a renormalization of the cou-
pling functions.

Appendix A. Potential matrix elements

In this appendix we give the potential matrix elements for
scalar, pseudovector, and vector mesons. Overall factors in
front are omitted. In contrast to the normal expressions
which are used in the Bonn codes [43], we release the as-
sumption of equal nucleon masses. This means that parti-
cle one and two can have different masses which leads to
additional independent matrix elements. Therefore, one
has to consider eight instead of six independent partial
waves or helicity matrix elements for the scattering of
positive-energy states. For completeness, we present in the
following the complete sets of matrix elements for the var-
ious OBE amplitudes. We follow the notation of ref. [43].
The potential expressions are presented in terms of helic-
ity states. First, the expressions for the scalar mesons, the
σ-meson and the δ-meson, are given here
〈
++|V J

s |++
〉
= Cs〈++ |φs|++

〉(
I
(1)
J + I

(0)
J

)
, (A.1)

〈
++|V J

s | − −
〉
= Cs

〈
++|φs| − −

〉(
I
(1)
J − I

(0)
J

)
, (A.2)

〈
+−|V J

s |+−
〉
= Cs

〈
+−|φs|+−

〉(
I
(2)
J + I

(0)
J

)
, (A.3)

〈
+−|V J

s | −+
〉
= Cs

〈
+−|φs| −+

〉(
I
(2)
J − I

(0)
J

)
, (A.4)

〈
++|V J

s |+−
〉
= −Cs

〈
++|φs|+−

〉
I
(3)
J , (A.5)

〈
++|V J

s | −+
〉
= −Cs

〈
++|φs|+−

〉
I
(3)
J , (A.6)

〈
+−|V j

s |++
〉
= −Cs

〈
+−|φs|++

〉
I
(3)
J , (A.7)

〈
−+|V J

s |++
〉
= −Cs

〈
+−|φs|++

〉
I
(3)
J , (A.8)

where one has
Cs = πg2

NNs (A.9)

and
〈
λ′1λ

′
2|φs|λ1λ2

〉
=

(
1− 4λ′1λ1p

′p

ε′1ε1

)(
1− 4λ′2λ2p

′p

ε′2ε2

)
(A.10)

with εi = E∗i +m∗i . The integrals over the Legendre poly-

nomials I
(0)
J − I

(6)
J are those given in appendix B of [43].

Secondly, the expression for pseudovector mesons, the
π-meson and the η-meson, are written as
〈
++|V J

pv|++
〉
=Cpv

〈
++|φpv|++

〉(
I
(1)
J +I

(0)
J

)
, (A.11)

〈
++|V J

pv|−−
〉
=Cpv

〈
++|φpv|−−

〉(
I
(1)
J −I(0)

J

)
, (A.12)

〈
+−|V J

pv|+−
〉
=Cpv

〈
+−|φpv|+−

〉(
I
(2)
J +I

(0)
J

)
, (A.13)

〈
+−|V J

pv|−+
〉
=Cpv

〈
+−|φpv|−+

〉(
I
(2)
J −I(0)

J

)
, (A.14)
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〈
++|V J

pv|+−
〉
=−Cpv

〈
++|φpv|+−

〉
I
(3)
J , (A.15)

〈
++|V J

pv|−+
〉
=−Cpv

〈
++|φpv|+−

〉
I
(3)
J , (A.16)

〈
+−|V J

pv|++
〉
=−Cpv

〈
+−|φpv|++

〉
I
(3)
J , (A.17)

〈
−+|V J

pv|++
〉
=−Cpv

〈
+−|φpv|++

〉
I
(3)
J , (A.18)

where one has

Cpv = π
g2
NNpv

4M2
(A.19)

and

〈
λ′1λ

′
2|φpv|λ1λ2

〉
= (2λ′1p

′ − 2λ1p)

(
1 +

4λ1λ
′
1pp

′

ε1ε′1

)

×(2λ′2p′ − 2λ2p)

(
1 +

4λ2λ
′
2pp

′

ε2ε′2

)
. (A.20)

with scaling mass M . In eq. (A.20) the Blankenbecler-
Sugar or Thomas approximation is used, i.e. the ex-
changed energy transfer between the two nucleons is re-
stricted to zero. Therefore, the four-momentum transfer
is (p′ − p)µ = (0,p′ − p). This approximation is later on
also applied for the vector mesons.

Finally, the vector mesons, the ω-meson and the ρ-
meson, are treated. The vector-meson exchange potential
Vv consists of three terms: the vector-vector contribution
Vvv, the tensor-tensor contribution Vtt, and the mixed
vector-tensor contribution Vvt. The vector-vector part can
be written as
〈
++|V J

vv|++
〉
=Cvv

[〈
++|φ0|++

〉(
I
(1)
J +I

(0)
J

)

+
〈
++|φv|++

〉(
I
(1)
J −3I

(0)
J )
]
, (A.21)

〈
++|V J

vv|−−
〉
=Cvv

[〈
++|φ0|−−

〉(
I
(1)
J −I(0)

J

)

+
〈
++|φv|−−

〉(
I
(1)
J +3I

(0)
J

)]
, (A.22)

〈
+−|V J

vv|+−
〉
=Cvv

[〈
+−|φ0|+−

〉

+
〈
+−|φv|+−

〉](
I
(2)
J +I

(0)
J

)
, (A.23)

〈
+−|V J

vv|−+
〉
=Cvv

[〈
+−|φ0|−+

〉

+
〈
+−|φv|−+

〉](
I
(2)
J −I(0)

J

)
, (A.24)

〈
++|V J

vv|+−
〉
=−Cvv

[〈
++|φ0|+−

〉

+
〈
++|φv|+−

〉]
I
(3)
J , (A.25)

〈
++|V J

vv|−+
〉
=−Cvv

[〈
++|φ0|+−

〉

+
〈
++|φv|+−

〉]
I
(3)
J , (A.26)

〈
+−|V J

vv|++
〉
=−Cvv

[〈
+−|φ0|++

〉

+
〈
+−|φv|++

〉]
I
(3)
J , (A.27)

〈
−+|V J

vv|++
〉
=−Cvv

[〈
+−|φ0|++

〉

+
〈
+−|φv|++

〉]
I
(3)
J , (A.28)

where one has
Cvv = πg2

NNv , (A.29)

〈
λ′1λ

′
2|φ0|λ1λ2

〉
=

(
1 +

4λ′1λ1p
′p

ε′1ε1

)(
1 +

4λ′2λ2p
′p

ε′2ε2

)
,

(A.30)

and

〈
λ′1λ

′
2|φv|λ1λ2

〉
= −

(
2λ′1p

′

ε′1
+

2λ1p

ε1

)(
2λ′2p

′

ε′2
+

2λ2p

ε2

)
.

(A.31)
The tensor-tensor part is

〈
++|V J

tt |++
〉
= Ctt

[〈
++|φ1t|++

〉(
I
(1)
J +I

(0)
J

)

+
〈
++|φ1θ|++

〉(
I
(4)
J +I

(1)
J

)

+
〈
++|φσt|++

〉(
I
(1)
J −3I

(0)
J

)]
, (A.32)

〈
++|V J

tt |−−
〉
= Ctt

[〈
++|φ1t|−−

〉(
I
(1)
J −I(0)

J

)

+
〈
++|φ1θ|−−

〉(
I
(4)
J −I(1)

J

)

+
〈
++|φσt|−−

〉(
I
(1)
J +3I

(0)
J )], (A.33)

〈
+−|V J

tt |+−
〉
= Ctt

[〈
+−|φ1t|+−

〉

+
〈
+−|φσt|+−

〉](
I
(2)
J +I

(0)
J

)

+
〈
+−|φ1θ|+−

〉(
I
(5)
J +I

(1)
J

)
, (A.34)

〈
+−|V J

tt |−+
〉
= Ctt

[〈
+−|φ1t|−+

〉

+
〈
+−|φσt|−+

〉](
I
(2)
J −I(0)

J

)

+
〈
+−|φ1θ|−+

〉(
I
(5)
J −I(1)

J

)
, (A.35)

〈
++|V J

tt |+−
〉
= −Ctt

[[〈
++|φ1t|+−

〉

+
〈
++|φσt|+−

〉]
I
(3)
J

+
〈
++|φ1θ|+−

〉
I
(6)
J

]
, (A.36)

〈
++|V J

tt |−+
〉
= −Ctt

[[〈
++|φ1t|+−

〉

+
〈
++|φσt|+−

〉]
I
(3)
J

+
〈
++|φ1θ|+−

〉
I
(6)
J

]
, (A.37)

〈
+−|V J

tt |++
〉
= −Ctt

[[〈
+−|φ1t|++

〉

+
〈
+−|φσt|++

〉]
I
(3)
J

+
〈
+−|φ1θ|++

〉
I
(6)
J

]
, (A.38)

〈
−+|V J

tt |++
〉
= −Ctt

[[〈
+−|φ1t|++

〉

+
〈
+−|φσt|++

〉]
I
(3)
J

+
〈
+−|φ1θ|++

〉
I
(6)
J

]
, (A.39)

where one uses

Ctt = π
g2
NNt

4M2
. (A.40)

Furthermore, one has

〈
λ′1λ

′
2|φ1θ|λ1λ2

〉
=2pp′

(
1− 4λ′1λ1p

′p

ε1ε′1

)(
1− 4λ′2λ2p

′p

ε′2ε2

)
,

(A.41)
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〈
λ′1λ

′
2|φσt|λ1λ2

〉
=−

(
2λ1p

ε1
+
2λ′1p

′

ε′1

)(
2λ2p

ε2
+

2λ′2p
′

ε′2

)

×(m∗1 +m′∗1 )(m
∗
2 +m′∗2 )− (E′∗1 − E∗1 )(E

′∗
2 − E∗2 )

×
(
2λ1p

ε1
− 2λ′1p

′

ε′1

)(
2λ2p

ε2
− 2λ′2p

′

ε′2

)

+(m∗2 +m′∗2 )(E
′∗
1 − E∗1 )

×
(
2λ1p1

ε1
− 2λ′1p

′
1

ε′1

)(
2λ2p2

ε2
+

2λ′2p
′
2

ε′2

)

+(m∗1 +m′∗1 )(E
′∗
2 − E∗2 )

×
(
2λ1p1

ε1
+

2λ′1p
′
1

ε′1

)(
2λ2p2

ε2
− 2λ′2p

′
2

ε′2

)
, (A.42)

and

〈
λ′1λ

′
2|φ1t|λ1λ2

〉
=Att

(
1+

4λ′1λ1p
′p

ε1ε′1

)(
1+

4λ′2λ2p
′p

ε′2ε2

)

+Btt

(
1− 4λ′1λ1p

′p

ε1ε′1

)(
1− 4λ′2λ2p

′p

ε′2ε2

)

+Dtt

(
1 +

4λ′1λ1p
′p

ε1ε′1

)(
1− 4λ′2λ2p

′p

ε′2ε2

)

+Ett

(
1− 4λ′1λ1p

′p

ε1ε′1

)(
1 +

4λ′2λ2p
′p

ε′2ε2

)

+(E′∗1 − E∗1 )

(
2λ1p

ε1
− 2λ′1p

′

ε′1

)

×(2λ′1p′ + 2λ1p)

(
1− 4λ′2λ2p

′p

ε′2ε2

)

+(E′∗2 − E∗2 )

(
2λ2p

ε2
− 2λ′2p

′

ε′2

)

×(2λ′2p′ + 2λ2p)

(
1− 4λ′1λ1p

′p

ε′1ε1

)
(A.43)

with Att = (m∗1 +m′∗1 )(m∗2 +m′∗2 ), Btt = (m∗1 +m′∗1 )
2 +

(m∗2 + m′∗2 )
2 + (E′∗1 + E∗1 )(E

′∗
2 + E∗2 ) + p2 + p′2, Dtt =

−(E′∗2 + E∗2 + E∗1 + E′∗1 )(m∗1 +m′∗1 ), and Ett = −(E′∗2 +
E∗2 +E

∗
1 +E

′∗
1 )(m∗2+m

′∗
2 ). Furthermore, the mixed vector-

tensor part is given by

〈
++|V J

vt|++
〉
= Cvt

[〈
++|φ1|++

〉(
I
(1)
J + I

(0)
J

)

+
〈
++|φσ|++

〉(
I
(1)
J − 3I

(0)
J

)]
, (A.44)

〈
++|V J

vt| − −
〉
= Cvt

[〈
++|φ1| − −

〉(
I
(1)
J − I

(0)
J )

+
〈
++|φσ| − −

〉(
I
(1)
J + 3I

(0)
J

)]
, (A.45)

〈
+−|V J

vt|+−
〉
= Cvt

[〈
+−|φ1|+−

〉

+
〈
+−|φσ|+−

〉](
I
(2)
J + I

(0)
J

)
, (A.46)

〈
+−|V J

vt| −+
〉
= Cvt

[〈
+−|φ1| −+

〉

+
〈
+−|φσ| −+

〉](
I
(2)
J − I

(0)
J

)
, (A.47)

〈
++|V J

vt|+−
〉
= −Cvt

[〈
++|φ1|+−

〉

+
〈
++|φσ|+−

〉]
I
(3)
J , (A.48)

〈
++|V J

vt| −+
〉
= −Cvt

[〈
++|φ1|+−

〉

+
〈
++|φσ|+−

〉]
I
(3)
J , (A.49)

〈
+−|V J

vt|++
〉
= −Cvt

[〈
+−|φ1|++

〉

+
〈
+−|φσ|++

〉]
I
(3)
J , (A.50)

〈
−+|V J

vt|++
〉
= −Cvt

[〈
+−|φ1|++

〉

+
〈
+−|φσ|++

〉]
I
(3)
J , (A.51)

where one has

Cvt=π
gNNvgNNt

2M
, (A.52)

〈
λ′1λ

′
2|φ1|λ1λ2

〉
=

[
Avt+Dvt

16λ′1λ
′
2λ1λ2p

′2p2

ε′1ε
′
2ε1ε2

]
, (A.53)

and

〈
λ′1λ

′
2|φσ|λ1λ2

〉
=

(m∗1 +m′∗1 +m∗2 +m′∗2 )
〈
λ′1λ

′
2|φv|λ1λ2

〉

+(E′∗1 − E∗1 )

(
2λ1p

ε1
− 2λ′1p

′

ε′1

)(
2λ2p

ε2
+

2λ′2p
′

ε′2

)

+(E′∗2 − E∗2 )

(
2λ1p

ε1
+

2λ′1p
′

ε′1

)(
2λ2p

ε2
− 2λ′2p

′

ε′2

)
(A.54)

with Avt = 2(m′∗1 +m′∗2 +m∗1 +m∗2−E′∗1 −E′∗2 −E∗1 −E∗2 )
and Dvt = 2(ε′1 + ε′2 + ε1 + ε2). For the ω-meson only the
vector-vector part contributes, because gNNt = 0 for the
ω-meson.

Appendix B. Partial-wave decomposition

For a general two-body reaction with four distinct spin-
1/2 particles and ignoring anti-particles, the number
of independent amplitudes is sixteen. Due to parity
conservation this number is reduced to eight indepen-
dent amplitudes. We denote a helicity amplitude by
〈λ′1λ′2|φJ (p′, p)|λ1λ2〉, where λi and λ′i are the initial and
final helicities, respectively. Therefore, we have the follow-
ing set of amplitudes:

φJ1 (p
′, p) =

〈
++|φJ (p′, p)|++

〉
,

φJ2 (p
′, p) =

〈
++|φJ (p′, p)| − −

〉
,

φJ3 (p
′, p) =

〈
+−|φJ (p′, p)|+−

〉
,

φJ4 (p
′, p) =

〈
+−|φJ (p′, p)| −+

〉
, (B.1)

φJ5 (p
′, p) =

〈
++|φJ (p′, p)|+−

〉
,

φJ6 (p
′, p) =

〈
++|φJ (p′, p)| −+

〉
,

φJ7 (p
′, p) =

〈
+−|φJ (p′, p)|++

〉
,

φJ8 (p
′, p) =

〈
−+|φJ (p′, p)|++

〉
.
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To partially decouple this system, it is useful to introduce
the following linear combinations of helicity amplitudes:

T J12,o = φJ1 − φJ2 ,

T J34,o = φJ3 − φJ4 ,

T J56,o = φJ5 − φJ6 ,

T J78,o = φJ7 − φJ8 , (B.2)

T J12,e = φJ1 + φJ2 ,

T J34,e = φJ3 + φJ4 ,

T J56,e = φJ5 + φJ6 ,

T J78,e = φJ7 + φJ8 .

In solving the coupled scattering equation using the linear
combinations of the helicity amplitudes, two subsets of
coupled integral equations,

T 12
o = V 12

o +

∫
V 12
o T 12

o + V 56
o T 78

o ,

T 34
o = V 34

o +

∫
V 34
o T 34

o + V 78
o T 56

o , (B.3)

T 56
o = V 56

o +

∫
V 12
o T 56

o + V 56
o T 34

o ,

T 78
o = V 78

o +

∫
V 78
o T 12

o + V 34
o T 78

o ,

and

T 12
e = V 12

e +

∫
V 12
e T 12

e + V 56
e T 78

e ,

T 34
e = V 34

e +

∫
V 34
e T 34

e + V 78
e T 56

e , (B.4)

T 56
e = V 56

e +

∫
V 12
e T 56

e + V 56
e T 34

e ,

T 78
e = V 78

e +

∫
V 78
e T 12

e + V 34
e T 78

e ,

emerge. Equation (B.3) is a coupled spin singlet-triplet
state, whereas eq. (B.4) is a coupled triplet state. For
identical particles the coupled spin singlet-triplet state of
eq. (B.3) decouples further into a decoupled singlet state

T 12
o = V 12

o +

∫
V 12
o T 12

o (B.5)

and a decoupled triplet state

T 34
o = V 34

o +

∫
V 34
o T 34

o (B.6)

due to 56V J
o = 78V J

o = 56T Jo = 78T Jo = 0.
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26. T. Frick, Kh. Gad, H. Müther, P. Czerski, Phys. Rev. C 65,

034321 (2002); W. Zuo, L.G. Cao, B.A. Li, U. Lombardo,
C.W. Shen, Phys. Rev. C 72, 014005 (2005).

27. B. Liu, V. Greco, V. Baran, M. Colonna, M. Di Toro, Phys.
Rev. C 65, 045201 (2002).

28. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
29. C.J. Horowitz, B.D. Serot, Nucl. Phys. A 464, 613 (1987).
30. L. Sehn, C. Fuchs, A. Faessler, Phys. Rev. C 56, 216

(1997).
31. H.A. Bethe, B.H. Brandow, A.G. Petschek, Phys. Rev.

129, 225 (1963).
32. K. Erkelenz, Phys. Rep. C 13, 191 (1974).
33. M.I. Haftel, F. Tabakin, Nucl. Phys. A 158, 1 (1970).



42 The European Physical Journal A

34. M. Rose, Elementary Theory of Angular Momentum (Wi-
ley, New York, 1957).

35. J.A. Tjon, S.J. Wallace, Phys. Rev. C 32, 267 (1985).
36. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C

51, 38 (1995).
37. B.S. Pudliner, V.R. Pandharipande, J. Carlson, R.B.

Wiringa, Phys. Rev. Lett. 74, 4396 (1995).
38. S. Gandolfi, F. Pederiva, S. Fantoni, K.E. Schmidt, nucl-

th/0607022.
39. FOPI Collaboration (G. Stoicea et al.), Phys. Rev. Lett.

92, 072303 (2004).

40. KaoS Collaboration (C. Sturm et al.), Phys. Rev. Lett.
86, 39 (2001); C. Fuchs, A. Faessler, E. Zabrodin, Y.M.
Zheng, Phys. Rev. Lett. 86, 1974 (2001); C. Fuchs, Prog.
Part. Nucl. Phys. 56, 1 (2006).

41. D.J. Nice, E.M. Splaver, I.H. Stairs, O. Löhmer, A. Jessner,
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